Skip to content

Installing the Graphics Agent for Linux on Ubuntu

Important: Required ports will be automatically opened

The Graphics Agent for Linux installer will add firewall exceptions for the following required PCoIP ports during installation: TCP 443, TCP 4172, UDP 4172, and TCP 60443.

To install the Anyware Graphics Agent for Linux software:

  1. Download and install the repository via the shell script provided here.

  2. Optionally install USB dependencies, if you intend to support USB devices other than keyboards, mice, and pointer devices. If you skip this step, USB redirection will be completely disabled and bridged USB devices will not work.

    sudo apt install usb-vhci-dkms
    
    1. Install the Anyware Graphics Agent for Linux:

    sudo apt update
    sudo apt install pcoip-agent-graphics
    
    1. Note your machine's local IP address. Clients connecting directly to the host workstation will need this number to connect. 1. Enter the license registration code you received from us.

    Note: These instructions are for Cloud Licensing

    These instructions assume you are using Anyware Cloud Licensing to activate your PCoIP session licenses. If you are using the License Server instead, see Licensing the Graphics Agent for Linux.

    For unproxied internet connections, type:

    pcoip-register-host --registration-code=<XXXXXX@YYY-YYYY-YYY>
    

    For proxied internet conections, type:

    pcoip-register-host --registration-code=<XXXXXX@YYY-YYYY-YYY> --proxy-server=<serverURL> --proxy-port=<port>
    
    1. Reboot the desktop.

Installing on stock Ubuntu 18.04 installations

When connecting to the Graphics Agent for Linux installed on a stock Ubuntu 18.04 installation, users may not be able to establish PCoIP sessions. You can work around this issue by setting the pcoip.desktop_session value in pcoip-agent.conf:

  1. Open /etc/pcoip-agent/pcoip-agent.conf in a text editor

  2. Add the following line:

    pcoip.desktop_session = ubuntu
    
  3. Save and close the editor.

Note: Desktop user interfaces will only be available using PCoIP

Once installed and running, the Anyware Graphics Agent for Linux takes over the graphics subsystem which is then unavailable to hypervisors. You can only view the graphical user interface when connecting with a Anyware client.

For example, you cannot view an ESXi virtual machine console through VSphere; you must connect to the machine using PCoIP.

GNOME Display Manager Support

  • GNOME Display Manager (GDM) is now supported by the Graphics Agent for Linux as a credential authenticator when gdm-runtime-config is available. This allows PCoIP sessions to be locked and unlocked within the remoted session. When the PCoIP service starts, GDM is configured to run without obstructing access to the GPU. This configuration is reverted when the PCoIP service stops. This behavior is always on and requires no configuration on the Anyware agent. For more information on GDM, see the GNOME Display Manager Reference Manual.

Installing on a Physical PC

When installing the Anyware Agent on a physical machine with a Quadro card, additional steps are required. If you installed the Graphics Agent for Linux on a virtual machine, you can ignore these steps.

Note: Install the agent first

You must install the Graphics Agent for Linux as described above before proceeding.

Important: Some GPUs are automatically configured

The Graphics Agent for Linux can use the following NVIDIA GPUs automatically:

  • K2000
  • K2200
  • K4000
  • K4200
  • K5200
  • M4000
  • P2000
  • P4000
  • P5000
  • P6000
  • RTX4000

If you are unable to start a session using any of these GPUs, follow the procedure described next.

These steps are only required when installing on a physical, non-virtualized machine with a Quadro card:

  1. Attempt to start a PCoIP session. If the connection attempt succeeds, you can stop here. Your GPU will work without further configuration. If the attempt fails, continue on; we will use the log information generated by the failed attempt in the next steps.

  2. Look in /var/log/Xorg.100.log for lines like this:

    [   293.834] (--) NVIDIA(GPU-0): LNX Linux XGA (DFP-0): connected
    [   293.834] (--) NVIDIA(GPU-0): LNX Linux XGA (DFP-0): Internal DisplayPort
    [   293.834] (--) NVIDIA(GPU-0): LNX Linux XGA (DFP-0): 1440.0 MHz maximum pixel clock
    [   293.834] (--) NVIDIA(GPU-0): 
    [   293.834] (--) NVIDIA(GPU-0): LNX Linux XGA (DFP-1): connected
    [   293.834] (--) NVIDIA(GPU-0): LNX Linux XGA (DFP-1): Internal TMDS
    [   293.834] (--) NVIDIA(GPU-0): LNX Linux XGA (DFP-1): 165.0 MHz maximum pixel clock
    [   293.834] (--) NVIDIA(GPU-0): 
    [   293.834] (--) NVIDIA(GPU-0): LNX Linux XGA (DFP-2): connected
    [   293.834] (--) NVIDIA(GPU-0): LNX Linux XGA (DFP-2): Internal DisplayPort
    [   293.834] (--) NVIDIA(GPU-0): LNX Linux XGA (DFP-2): 1440.0 MHz maximum pixel clock
    [   293.835] (--) NVIDIA(GPU-0): 
    [   293.835] (--) NVIDIA(GPU-0): LNX Linux XGA (DFP-3): connected
    [   293.835] (--) NVIDIA(GPU-0): LNX Linux XGA (DFP-3): Internal TMDS
    [   293.835] (--) NVIDIA(GPU-0): LNX Linux XGA (DFP-3): 165.0 MHz maximum pixel clock
    [   293.835] (--) NVIDIA(GPU-0): 
    [   293.835] (--) NVIDIA(GPU-0): DFP-4: disconnected
    [   293.835] (--) NVIDIA(GPU-0): DFP-4: Internal DisplayPort
    [   293.835] (--) NVIDIA(GPU-0): DFP-4: 1440.0 MHz maximum pixel clock
    [   293.835] (--) NVIDIA(GPU-0): 
    [   293.835] (--) NVIDIA(GPU-0): DFP-5: disconnected
    [   293.835] (--) NVIDIA(GPU-0): DFP-5: Internal TMDS
    [   293.835] (--) NVIDIA(GPU-0): DFP-5: 165.0 MHz maximum pixel clock
    [   293.835] (--) NVIDIA(GPU-0): 
    [   293.835] (--) NVIDIA(GPU-0): DFP-6: disconnected
    [   293.835] (--) NVIDIA(GPU-0): DFP-6: Internal DisplayPort
    [   293.835] (--) NVIDIA(GPU-0): DFP-6: 1440.0 MHz maximum pixel clock
    [   293.835] (--) NVIDIA(GPU-0): 
    [   293.835] (--) NVIDIA(GPU-0): DFP-7: disconnected
    [   293.835] (--) NVIDIA(GPU-0): DFP-7: Internal TMDS
    [   293.835] (--) NVIDIA(GPU-0): DFP-7: 165.0 MHz maximum pixel clock
    
  3. Note the names of the outputs with the highest maximum pixel clocks (as many as four will be shown). In the above example, you would note DFP-0, DFP-2, DFP-4, and DFP-6.

    Note: Systems with fewer than four displays (Quadro K series)

    If there are fewer than four outputs in your system, note them all. K-series cards only support two enabled outputs at a time, but may show more.

  4. Create a file called /etc/X11/xorg.conf.d/10-pcoip.conf:

    touch /etc/X11/xorg.conf.d/10-pcoip.conf
    
  5. Open /etc/X11/xorg.conf.d/10-pcoip.conf in a text editor.

  6. Paste the following text into the file:

    Section "Screen"
    Identifier "dummy_screen"
    Device "dummy_videocard"
    Option "UseDisplayDevice" ""
    Option "ConnectedMonitor" ""
    Option "Monitor-" "Monitor0"
    Option "Monitor-" "Monitor1"
    Option "Monitor-" "Monitor2"
    Option "Monitor-" "Monitor3"
    Monitor "Monitor0"
    EndSection
    
  7. Populate the ConnectedMonitor and UseDisplayDevice settings with the display IDs you noted earlier, as a comma-separated list. Using our example (your values may be different):

    Option "UseDisplayDevice" "DFP-0,DFP-2,DFP-4,DFP-6"
    Option "ConnectedMonitor" "DFP-0,DFP-2,DFP-4,DFP-6"
    
  8. Next, map these output values to your expected displays. Modify the monitor options to correspond to the displays in the previous step. Each output should be mapped to a monitor identifier from one of the Monitor sections in 10-pcoip.conf.

    Continuing our example, we would map the four outputs to four monitors like this (yours may be different; for example, you may only have two outputs):

    Option "Monitor-DFP-0" "Monitor0"
    Option "Monitor-DFP-2" "Monitor1"
    Option "Monitor-DFP-4" "Monitor2"
    Option "Monitor-DFP-6" "Monitor3"
    
  9. Save and close 10-pcoip.conf.

  10. Attempt another PCoIP session. If the session is still unsuccessful, and you have a Quadro K series card, repeat steps 7 and 8 with a different output combination, e.g. if you tried DFP-3,DFP-4, try DFP-1,DFP-2. Due to driver differences certain output combinations may not work.

  11. To prevent the NVIDIA driver from changing the kernel mode setting, add the nomodeset parameter to the GRUB configuration:

    1. Open /etc/default/grub in a text editor.

    2. Add nomodeset to GRUB_CMDLINE_LINUX_DEFAULT.

    3. Save and close the file.

    4. Rebuild the GRUB configuration:

      sudo update-grub
      
    5. Reboot the machine.

  12. Attempt a PCoIP connection again. The connection should succeed.

    If the session does not start, make sure that the displays are correctly configured.

Once you've installed the software, you can configure it, register licenses, or connect to it.

Installing USB Drivers on Secure Boot Enabled Linux Machines

If Secure Boot is enabled on a Linux host machine with UEFI, USB drivers cannot be installed on that host machine. This stops the client-side USB devices from getting bridged to the host machine. To prevent this from occurring, perform the following steps, provided that you have access to the UEFI Firmware Menu.

Note: If You Do Not Have UEFI Firmware Menu Access

If you do not have access to the UEFI Firmware Menu, either disable Secure Boot or deploy the Virtual Machine without Secure Boot.

  1. Connect to the remote host machine via SSH.

  2. Run the following command:

    sudo mokutil --import /var/lib/dkms/mok.pub
    
  3. If the Machine Owner Key (MOK) is not set, the mokutil utility will prompt you to create one.

  4. Reboot the machine.

  5. Enroll the MOK in the UEFI firmware menu.

  6. Reboot the machine again.

  7. Run the following commands:

    lsmod | grep usb
    dmesg | grep vhci
    

The output of this command indicates that usb-vhci is installed on the host machine.